Mock exam Geometry 2022 with solutions

1. Suppose n > 2 is a positive integer and imagine an n-simplex J = [vg, ..., v,] in R™. K is the
simplicial complex in R™ consisting of all the faces of J that have dimension 2 or less.

(a) Write down the Euler characteristic of K as a function of n.
For a simplex [S] all k-element subsets of ' C S correspond to a face [T] of the simplex
and all faces are like that. Therefore #Ky = #Jo =n+ 1 and # K, = #J; = ("'2"1) and
#Ko = #Jo = ("‘3"1) Since K contains no simplices of dimension > 2 we can compute
the Euler characteristic as x(K) =
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(b) For any i € {0,1,...,n}, denote by R; : R® — R” the affine reflection in the affine
hyperplane spanned by the (n — 1)-dimensional face of J that does NOT contain v;.
Prove that for any 4,5 € {0,1,...,n} the composition R; o R; is an affine rotation.

The composition of two affine reflections in affine planes X and Y is an affine rotation
whenever X and Y intersect. In this case X = [{vg, ..., v, \{v;}] and Y = [{vo, ..., vn}\
{v;}] so that X NY = [{vg,...,vn} \ {vi,v;}]. This is non-empty because n > 2.

(c) Define L = K U{Ry(0)|o € K}. Prove that L is a simplicial complex.

For any simplex [S] and any affine reflection R we have R([S]) = [R(S)] so the reflection of
a simplex is again a simplex. Now we should check that the intersection of two simplices
in L is again in L. The reflection hyperplane contains all vertices vy,...v, but not vp.
This means thatRy(v;) = v; whenever ¢ > 0 and Ry(vg) # vo. The simplices in L are of
the form [S] where #S5 < 3 and S C {Ro(vo),vo, v1,...vn} and S cannot contain both vy
and Ry(vp). The intersection of two simplices in L are therefore of three types: either we
have two simplices in K that intersect and there we already know that they intersect in
a common face inside K because J is a simplicial complex. Applying Ry which is its own
inverse we come to the same conclusion when both simplices that we want to intersect are
in Ry(K). Finally if one simplex [T is in K and the other [S] is not then their intersection
cannot contain v and also not Rg(vg). This implies that [7'] N [S] = [T\ {Ro(vo)}] N [5]
as this intersection takes place in K we are done.

(d) Find an explicit example of a simplex J as above such that |L| is not a convex polyhedron
in R™.
We can choose J = [e; — e2,0,e3] then Ry(z,y) = (—=z,y) is the reflection in the y-
axis. L contains the simplices {e; — ea} and {—e; — ea} so if |L| were to be a convex
polyhedron then |L| should also contain the point %(el — ey — €1 — e3) = —ey. However
|L| = [e1 — e2,0,e2] U [—e1 — e3,0, 2] does not contain —es.

2. Define f(x,y) = 2 —y — 1. Homogeneous coordinates in P? are taken with respect to the
standard basis of R3. Polarity is taken with respect to the standard inner product on R3.

(a) Find a non-zero polynomial in three variables F(z,y,z) such that P(X(f) x {1}) C
P(X(F)) C P2.
We homogenize f to get F(x,y,2) = 2? — yz — 22. Since F(x,y,1) = f(z,y) we have
X(f) x {1} € X(F) and applying P on both sides finishes the proof.

(b) Give the homogeneous coordinates of a point in P(X(F))\ P(X(f) x {1}).
Since F(x,y,0) = 22 we could pick the point [0 : 1 : 0] for example.
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(c)

Compute the polar of the projective line through the points [1:1: 1] and [1:2: 1] in P2.
If we set v = (1,1,1) and w = (1,2,1) then the pline through v and w is P(U) where
U = {v,w}. To find the polar we first determine U*. To find UL we have to find
which vectors a = (a1, as,a3) are perpendicular to both v and w. So we should have
a1 +az +a3 = 0 = a; + 2a3 + a3 meaning a; = 0 and a3 = —a; in other words
UPerp = (1,0, —1) and the polar to the pline P(U) is the set P(U+) = {(1,0,-1)}.

Prove that any two distinct projective planes in P2 must intersect in a projective line.
A projective plane in P? is of the form P(U) where U is a linear subspace of R* of dimen-
sion 3. Two distinct 3-dimensional subspaces of R* must intersect in a two-dimensional
subspace Z because of lemma 0.3 of the lecture notes. The corresponding projective
planes therefore intersect in the pline P(Z).

3. Define a Riemannian chart (P, g) by P = (0,6)% and g is given by g12 = go1 = g23 = g32 = 0

and g11 = ge2 = g33 = 1 and g13(,y, 2) = ga1(z,y,2) = §.

(a)

y

Define curves a, 3 : (—1,1) — P by a(t) = ((1 —t)%,1 —sin(t),1 — t) and B(¢t) =
(€2, et e~t). Prove that o and 3 cannot both be geodesics with respect to the metric g.
Since a(0) = 4(0) and &(0) = $(0) the uniqueness theorem of geodesics says that o = 3
on at least a small neighborhood of 0 in case both are geodesics. Looking at the formulas
it should be clear that «a(1/n) # $(1/n), so they cannot both be geodesics.

Find the angle between the curves o and  at their intersection point «(0) = §(0) =
(1,1,1).

The angle is 0 because the angle between the curves is the angle between their tangent
vectors ¢(0) = 5(0) with respect to the inner product ¢g(1,1, 1) and some chosen orienta-
tion. However the angle formula shows that the angle between two equal vectors is always
0 regardless of the orientation.

Find the length of the curve v : (—1,1) — P given by ~(t) = (1 el e!) with respect to g.

Since §(t) = e'es + eles we have g(y(1)(3(£),3(t) = 2(7( )) + e*gss(v(t) +

2e2tgos(y(t)) = 2¢e%*. Therefore L(y) = fl \/ ) (¥ ( ), y(t)dt = f V2etdt =

\/§f_11 etdt = v/2(e — %)

Is F: P— P given by F(x,y,2) = (83— (z —3),3— (y — 3),3 — ( — 3)) a Riemannian

isometry from (P, g) to (P, g)?

For any p derivative dF(p) is the linear map dF(p)(z,y, z) = (—z, —y, —z) so dF' (p) = —id

for all p. We should compare for any two vectors v, w the numbers g(F(p))(dF (p)v, dF (p)w)
with g(p)(v,w). If we choose v = e; w = e3 and p = (2,2,2) then F(p) = (4,4,4) and

g(F(p)(dF (p)v, dF (p)w) = g(4,4,4)(—v, —w) = g(4,4,4) (v, w) # g(3,3,3)(v, w) because

9(33731’2')(61763) = 913(1773/72;) = %




