Mock exam Geometry 2022 with solutions

- 1. Suppose $n \ge 2$ is a positive integer and imagine an *n*-simplex $J = [v_0, \ldots, v_n]$ in \mathbb{R}^n . K is the simplicial complex in \mathbb{R}^n consisting of all the faces of J that have dimension 2 or less.
 - (a) Write down the Euler characteristic of K as a function of n.

For a simplex [S] all k-element subsets of $T \subset S$ correspond to a face [T] of the simplex and all faces are like that. Therefore $\#K_0 = \#J_0 = n+1$ and $\#K_1 = \#J_1 = \binom{n+1}{2}$ and $\#K_2 = \#J_2 = \binom{n+1}{3}$. Since K contains no simplices of dimension > 2 we can compute the Euler characteristic as $\chi(K) =$

$$\binom{n+1}{1} - \binom{n+1}{2} + \binom{n+1}{3} = n+1 - \frac{1}{2}(n+1)n + \frac{1}{6}n(n+1)(n-1) = \frac{n+1}{6}(n^2 - 4n + 6)n(n-1) = \frac{n+1}{6}(n-1) =$$

- (b) For any $i \in \{0, 1, ..., n\}$, denote by $R_i : \mathbb{R}^n \to \mathbb{R}^n$ the affine reflection in the affine hyperplane spanned by the (n - 1)-dimensional face of J that does NOT contain v_i . Prove that for any $i, j \in \{0, 1, ..., n\}$ the composition $R_i \circ R_j$ is an affine rotation. The composition of two affine reflections in affine planes X and Y is an affine rotation whenever X and Y intersect. In this case $X = [\{v_0, ..., v_n\} \setminus \{v_i\}]$ and $Y = [\{v_0, ..., v_n\} \setminus \{v_j\}]$ so that $X \cap Y = [\{v_0, ..., v_n\} \setminus \{v_i, v_j\}]$. This is non-empty because $n \ge 2$.
- (c) Define $L = K \cup \{R_0(\sigma) | \sigma \in K\}$. Prove that L is a simplicial complex. For any simplex [S] and any affine reflection R we have R([S]) = [R(S)] so the reflection of a simplex is again a simplex. Now we should check that the intersection of two simplices in L is again in L. The reflection hyperplane contains all vertices $v_1, \ldots v_n$ but not v_0 . This means that $R_0(v_i) = v_i$ whenever i > 0 and $R_0(v_0) \neq v_0$. The simplices in L are of the form [S] where $\#S \leq 3$ and $S \subset \{R_0(v_0), v_0, v_1, \ldots v_n\}$ and S cannot contain both v_0 and $R_0(v_0)$. The intersection of two simplices in L are therefore of three types: either we have two simplices in K that intersect and there we already know that they intersect in a common face inside K because J is a simplicial complex. Applying R_0 which is its own inverse we come to the same conclusion when both simplices that we want to intersect are in $R_0(K)$. Finally if one simplex [T] is in K and the other [S] is not then their intersection cannot contain v_0 and also not $R_0(v_0)$. This implies that $[T] \cap [S] = [T \setminus \{R_0(v_0)\}] \cap [S]$ as this intersection takes place in K we are done.
- (d) Find an explicit example of a simplex J as above such that |L| is not a convex polyhedron in ℝⁿ.
 We can choose J = [e₁ e₂, 0, e₂] then R₀(x, y) = (-x, y) is the reflection in the y-axis. L contains the simplices {e₁ e₂} and {-e₁ e₂} so if |L| were to be a convex polyhedron then |L| should also contain the point ¹/₂(e₁ e₂ e₁ e₂) = -e₂. However |L| = [e₁ e₂, 0, e₂] ∪ [-e₁ e₂, 0, e₂] does not contain -e₂.
- 2. Define $f(x, y) = x^2 y 1$. Homogeneous coordinates in \mathbb{P}^2 are taken with respect to the standard basis of \mathbb{R}^3 . Polarity is taken with respect to the standard inner product on \mathbb{R}^3 .
 - (a) Find a non-zero polynomial in three variables F(x, y, z) such that $P(X(f) \times \{1\}) \subset P(X(F)) \subset \mathbb{P}^2$. We homogenize f to get $F(x, y, z) = x^2 - yz - z^2$. Since F(x, y, 1) = f(x, y) we have $X(f) \times \{1\} \subset X(F)$ and applying P on both sides finishes the proof.
 - (b) Give the homogeneous coordinates of a point in $P(X(F)) \setminus P(X(f) \times \{1\})$. Since $F(x, y, 0) = x^2$ we could pick the point [0:1:0] for example.

- (c) Compute the polar of the projective line through the points [1:1:1] and [1:2:1] in \mathbb{P}^2 . If we set v = (1,1,1) and w = (1,2,1) then the pline through \underline{v} and \underline{w} is P(U) where $U = \{\underline{v}, \underline{w}\}$. To find the polar we first determine U^{\perp} . To find U^{\perp} we have to find which vectors $a = (a_1, a_2, a_3)$ are perpendicular to both v and w. So we should have $a_1 + a_2 + a_3 = 0 = a_1 + 2a_2 + a_3$ meaning $a_2 = 0$ and $a_3 = -a_1$ in other words $U^p erp = (1, 0, -1)$ and the polar to the pline P(U) is the set $P(U^{\perp}) = \{(1, 0, -1)\}$.
- (d) Prove that any two distinct projective planes in \mathbb{P}^3 must intersect in a projective line. A projective plane in \mathbb{P}^3 is of the form P(U) where U is a linear subspace of \mathbb{R}^4 of dimension 3. Two distinct 3-dimensional subspaces of \mathbb{R}^4 must intersect in a two-dimensional subspace Z because of lemma 0.3 of the lecture notes. The corresponding projective planes therefore intersect in the pline P(Z).
- 3. Define a Riemannian chart (P,g) by $P = (0,6)^3$ and g is given by $g_{12} = g_{21} = g_{23} = g_{32} = 0$ and $g_{11} = g_{22} = g_{33} = 1$ and $g_{13}(x, y, z) = g_{31}(x, y, z) = \frac{y}{3}$.
 - (a) Define curves α, β : $(-1,1) \rightarrow P$ by $\alpha(t) = ((1-t)^2, 1-\sin(t), 1-t)$ and $\beta(t) = (e^{2t}, e^{-t}, e^{-t})$. Prove that α and β cannot both be geodesics with respect to the metric g. Since $\alpha(0) = \beta(0)$ and $\dot{\alpha}(0) = \dot{\beta}(0)$ the uniqueness theorem of geodesics says that $\alpha = \beta$ on at least a small neighborhood of 0 in case both are geodesics. Looking at the formulas it should be clear that $\alpha(1/n) \neq \beta(1/n)$, so they cannot both be geodesics.
 - (b) Find the angle between the curves α and β at their intersection point α(0) = β(0) = (1,1,1). The angle is 0 because the angle between the curves is the angle between their tangent vectors α(0) = β(0) with respect to the inner product g(1,1,1) and some chosen orientation. However the angle formula shows that the angle between two equal vectors is always 0 regardless of the orientation.
 - (c) Find the length of the curve $\gamma: (-1,1) \to P$ given by $\gamma(t) = (1,e^t,e^t)$ with respect to g. Since $\dot{\gamma}(t) = e^t e_2 + e^t e_3$ we have $g(\gamma(t))(\dot{\gamma}(t),\dot{\gamma}(t)) = e^{2t}g_{22}(\gamma(t)) + e^{2t}g_{33}(\gamma(t)) + 2e^{2t}g_{23}(\gamma(t)) = 2e^{2t}$. Therefore $L(\gamma) = \int_{-1}^1 \sqrt{g(\gamma(t))(\dot{\gamma}(t),\dot{\gamma}(t))}dt = \int_{-1}^1 \sqrt{2e^{2t}}dt = \sqrt{2}\int_{-1}^1 e^t dt = \sqrt{2}(e - \frac{1}{e}).$
 - (d) Is $F: P \to P$ given by F(x, y, z) = (3 (x 3), 3 (y 3), 3 (z 3)) a Riemannian isometry from (P, g) to (P, g)? For any p derivative dF(p) is the linear map dF(p)(x, y, z) = (-x, -y, -z) so dF(p) = -id for all p. We should compare for any two vectors v, w the numbers g(F(p))(dF(p)v, dF(p)w) with g(p)(v, w). If we choose $v = e_1$ $w = e_3$ and p = (2, 2, 2) then F(p) = (4, 4, 4) and $g(F(p))(dF(p)v, dF(p)w) = g(4, 4, 4)(-v, -w) = g(4, 4, 4)(v, w) \neq g(3, 3, 3)(v, w)$ because $g(x, y, z)(e_1, e_3) = g_{13}(x, y, z) = \frac{y}{3}$.