
Mock exam Geometry 2022 with solutions

1. Suppose n ≥ 2 is a positive integer and imagine an n-simplex J = [v0, . . . , vn] in Rn. K is the
simplicial complex in Rn consisting of all the faces of J that have dimension 2 or less.

(a) Write down the Euler characteristic of K as a function of n.
For a simplex [S] all k-element subsets of T ⊂ S correspond to a face [T ] of the simplex
and all faces are like that. Therefore #K0 = #J0 = n+ 1 and #K1 = #J1 =

(
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2

)
and

#K2 = #J2 =
(
n+1
3

)
. Since K contains no simplices of dimension > 2 we can compute

the Euler characteristic as χ(K) =(
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1

)
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n+ 1

2

)
+
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n+ 1

3

)
= n+1− 1
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6
n(n+1)(n−1) =

n+ 1

6
(n2−4n+6)

(b) For any i ∈ {0, 1, . . . , n}, denote by Ri : Rn → Rn the affine reflection in the affine
hyperplane spanned by the (n − 1)-dimensional face of J that does NOT contain vi.
Prove that for any i, j ∈ {0, 1, . . . , n} the composition Ri ◦Rj is an affine rotation.
The composition of two affine reflections in affine planes X and Y is an affine rotation
whenever X and Y intersect. In this case X = [{v0, . . . , vn}\{vi}] and Y = [{v0, . . . , vn}\
{vj}] so that X ∩ Y = [{v0, . . . , vn} \ {vi, vj}]. This is non-empty because n ≥ 2.

(c) Define L = K ∪ {R0(σ)|σ ∈ K}. Prove that L is a simplicial complex.
For any simplex [S] and any affine reflection R we have R([S]) = [R(S)] so the reflection of
a simplex is again a simplex. Now we should check that the intersection of two simplices
in L is again in L. The reflection hyperplane contains all vertices v1, . . . vn but not v0.
This means thatR0(vi) = vi whenever i > 0 and R0(v0) ̸= v0. The simplices in L are of
the form [S] where #S ≤ 3 and S ⊂ {R0(v0), v0, v1, . . . vn} and S cannot contain both v0
and R0(v0). The intersection of two simplices in L are therefore of three types: either we
have two simplices in K that intersect and there we already know that they intersect in
a common face inside K because J is a simplicial complex. Applying R0 which is its own
inverse we come to the same conclusion when both simplices that we want to intersect are
in R0(K). Finally if one simplex [T ] is in K and the other [S] is not then their intersection
cannot contain v0 and also not R0(v0). This implies that [T ] ∩ [S] = [T \ {R0(v0)}] ∩ [S]
as this intersection takes place in K we are done.

(d) Find an explicit example of a simplex J as above such that |L| is not a convex polyhedron
in Rn.
We can choose J = [e1 − e2, 0, e2] then R0(x, y) = (−x, y) is the reflection in the y-
axis. L contains the simplices {e1 − e2} and {−e1 − e2} so if |L| were to be a convex
polyhedron then |L| should also contain the point 1

2 (e1 − e2 − e1 − e2) = −e2. However
|L| = [e1 − e2, 0, e2] ∪ [−e1 − e2, 0, e2] does not contain −e2.

2. Define f(x, y) = x2 − y − 1. Homogeneous coordinates in P2 are taken with respect to the
standard basis of R3. Polarity is taken with respect to the standard inner product on R3.

(a) Find a non-zero polynomial in three variables F (x, y, z) such that P (X(f) × {1}) ⊂
P (X(F )) ⊂ P2.
We homogenize f to get F (x, y, z) = x2 − yz − z2. Since F (x, y, 1) = f(x, y) we have
X(f)× {1} ⊂ X(F ) and applying P on both sides finishes the proof.

(b) Give the homogeneous coordinates of a point in P (X(F )) \ P (X(f)× {1}).
Since F (x, y, 0) = x2 we could pick the point [0 : 1 : 0] for example.
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(c) Compute the polar of the projective line through the points [1 : 1 : 1] and [1 : 2 : 1] in P2.
If we set v = (1, 1, 1) and w = (1, 2, 1) then the pline through v and w is P (U) where
U = {v, w}. To find the polar we first determine U⊥. To find U⊥ we have to find
which vectors a = (a1, a2, a3) are perpendicular to both v and w. So we should have
a1 + a2 + a3 = 0 = a1 + 2a2 + a3 meaning a2 = 0 and a3 = −a1 in other words
Uperp = (1, 0,−1) and the polar to the pline P (U) is the set P (U⊥) = {(1, 0,−1)}.

(d) Prove that any two distinct projective planes in P3 must intersect in a projective line.
A projective plane in P3 is of the form P (U) where U is a linear subspace of R4 of dimen-
sion 3. Two distinct 3-dimensional subspaces of R4 must intersect in a two-dimensional
subspace Z because of lemma 0.3 of the lecture notes. The corresponding projective
planes therefore intersect in the pline P (Z).

3. Define a Riemannian chart (P, g) by P = (0, 6)3 and g is given by g12 = g21 = g23 = g32 = 0
and g11 = g22 = g33 = 1 and g13(x, y, z) = g31(x, y, z) =

y
3 .

(a) Define curves α, β : (−1, 1) → P by α(t) = ((1 − t)2, 1 − sin(t), 1 − t) and β(t) =
(e2t, e−t, e−t). Prove that α and β cannot both be geodesics with respect to the metric g.
Since α(0) = β(0) and α̇(0) = β̇(0) the uniqueness theorem of geodesics says that α = β
on at least a small neighborhood of 0 in case both are geodesics. Looking at the formulas
it should be clear that α(1/n) ̸= β(1/n), so they cannot both be geodesics.

(b) Find the angle between the curves α and β at their intersection point α(0) = β(0) =
(1, 1, 1).
The angle is 0 because the angle between the curves is the angle between their tangent
vectors α̇(0) = β̇(0) with respect to the inner product g(1, 1, 1) and some chosen orienta-
tion. However the angle formula shows that the angle between two equal vectors is always
0 regardless of the orientation.

(c) Find the length of the curve γ : (−1, 1) → P given by γ(t) = (1, et, et) with respect to g.
Since γ̇(t) = ete2 + ete3 we have g(γ(t))(γ̇(t), γ̇(t)) = e2tg22(γ(t)) + e2tg33(γ(t)) +

2e2tg23(γ(t)) = 2e2t. Therefore L(γ) =
∫ 1

−1

√
g(γ(t))(γ̇(t), γ̇(t))dt =

∫ 1

−1

√
2e2tdt =

√
2
∫ 1

−1
etdt =

√
2(e− 1

e ).

(d) Is F : P → P given by F (x, y, z) = (3 − (x − 3), 3 − (y − 3), 3 − (z − 3)) a Riemannian
isometry from (P, g) to (P, g)?
For any p derivative dF (p) is the linear map dF (p)(x, y, z) = (−x,−y,−z) so dF (p) = −id
for all p. We should compare for any two vectors v, w the numbers g(F (p))(dF (p)v, dF (p)w)
with g(p)(v, w). If we choose v = e1 w = e3 and p = (2, 2, 2) then F (p) = (4, 4, 4) and
g(F (p))(dF (p)v, dF (p)w) = g(4, 4, 4)(−v,−w) = g(4, 4, 4)(v, w) ̸= g(3, 3, 3)(v, w) because
g(x, y, z)(e1, e3) = g13(x, y, z) =

y
3 .
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