1. Suppose $n \geq 2$ is a positive integer and imagine an n-simplex $J=\left[v_{0}, \ldots, v_{n}\right]$ in \mathbb{R}^{n}. K is the simplicial complex in \mathbb{R}^{n} consisting of all the faces of J that have dimension 2 or less.
(a) Write down the Euler characteristic of K as a function of n.

For a simplex $[S]$ all k-element subsets of $T \subset S$ correspond to a face $[T]$ of the simplex and all faces are like that. Therefore $\# K_{0}=\# J_{0}=n+1$ and $\# K_{1}=\# J_{1}=\binom{n+1}{2}$ and $\# K_{2}=\# J_{2}=\binom{n+1}{3}$. Since K contains no simplices of dimension >2 we can compute the Euler characteristic as $\chi(K)=$

$$
\binom{n+1}{1}-\binom{n+1}{2}+\binom{n+1}{3}=n+1-\frac{1}{2}(n+1) n+\frac{1}{6} n(n+1)(n-1)=\frac{n+1}{6}\left(n^{2}-4 n+6\right)
$$

(b) For any $i \in\{0,1, \ldots, n\}$, denote by $R_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ the affine reflection in the affine hyperplane spanned by the $(n-1)$-dimensional face of J that does NOT contain v_{i}. Prove that for any $i, j \in\{0,1, \ldots, n\}$ the composition $R_{i} \circ R_{j}$ is an affine rotation.
The composition of two affine reflections in affine planes X and Y is an affine rotation whenever X and Y intersect. In this case $X=\left[\left\{v_{0}, \ldots, v_{n}\right\} \backslash\left\{v_{i}\right\}\right]$ and $Y=\left[\left\{v_{0}, \ldots, v_{n}\right\} \backslash\right.$ $\left.\left\{v_{j}\right\}\right]$ so that $X \cap Y=\left[\left\{v_{0}, \ldots, v_{n}\right\} \backslash\left\{v_{i}, v_{j}\right\}\right]$. This is non-empty because $n \geq 2$.
(c) Define $L=K \cup\left\{R_{0}(\sigma) \mid \sigma \in K\right\}$. Prove that L is a simplicial complex.

For any simplex $[S]$ and any affine reflection R we have $R([S])=[R(S)]$ so the reflection of a simplex is again a simplex. Now we should check that the intersection of two simplices in L is again in L. The reflection hyperplane contains all vertices $v_{1}, \ldots v_{n}$ but not v_{0}. This means that $R_{0}\left(v_{i}\right)=v_{i}$ whenever $i>0$ and $R_{0}\left(v_{0}\right) \neq v_{0}$. The simplices in L are of the form $[S]$ where $\# S \leq 3$ and $S \subset\left\{R_{0}\left(v_{0}\right), v_{0}, v_{1}, \ldots v_{n}\right\}$ and S cannot contain both v_{0} and $R_{0}\left(v_{0}\right)$. The intersection of two simplices in L are therefore of three types: either we have two simplices in K that intersect and there we already know that they intersect in a common face inside K because J is a simplicial complex. Applying R_{0} which is its own inverse we come to the same conclusion when both simplices that we want to intersect are in $R_{0}(K)$. Finally if one simplex $[T]$ is in K and the other $[S]$ is not then their intersection cannot contain v_{0} and also not $R_{0}\left(v_{0}\right)$. This implies that $[T] \cap[S]=\left[T \backslash\left\{R_{0}\left(v_{0}\right)\right\}\right] \cap[S]$ as this intersection takes place in K we are done.
(d) Find an explicit example of a simplex J as above such that $|L|$ is not a convex polyhedron in \mathbb{R}^{n}.
We can choose $J=\left[e_{1}-e_{2}, 0, e_{2}\right]$ then $R_{0}(x, y)=(-x, y)$ is the reflection in the y axis. L contains the simplices $\left\{e_{1}-e_{2}\right\}$ and $\left\{-e_{1}-e_{2}\right\}$ so if $|L|$ were to be a convex polyhedron then $|L|$ should also contain the point $\frac{1}{2}\left(e_{1}-e_{2}-e_{1}-e_{2}\right)=-e_{2}$. However $|L|=\left[e_{1}-e_{2}, 0, e_{2}\right] \cup\left[-e_{1}-e_{2}, 0, e_{2}\right]$ does not contain $-e_{2}$.
2. Define $f(x, y)=x^{2}-y-1$. Homogeneous coordinates in \mathbb{P}^{2} are taken with respect to the standard basis of \mathbb{R}^{3}. Polarity is taken with respect to the standard inner product on \mathbb{R}^{3}.
(a) Find a non-zero polynomial in three variables $F(x, y, z)$ such that $P(X(f) \times\{1\}) \subset$ $P(X(F)) \subset \mathbb{P}^{2}$.
We homogenize f to get $F(x, y, z)=x^{2}-y z-z^{2}$. Since $F(x, y, 1)=f(x, y)$ we have $X(f) \times\{1\} \subset X(F)$ and applying P on both sides finishes the proof.
(b) Give the homogeneous coordinates of a point in $P(X(F)) \backslash P(X(f) \times\{1\})$. Since $F(x, y, 0)=x^{2}$ we could pick the point $[0: 1: 0]$ for example.
(c) Compute the polar of the projective line through the points $[1: 1: 1]$ and $[1: 2: 1]$ in \mathbb{P}^{2}. If we set $v=(1,1,1)$ and $w=(1,2,1)$ then the pline through \underline{v} and \underline{w} is $P(U)$ where $U=\{v, w\}$. To find the polar we first determine U^{\perp}. To find U^{\perp} we have to find which vectors $a=\left(a_{1}, a_{2}, a_{3}\right)$ are perpendicular to both v and w. So we should have $a_{1}+a_{2}+a_{3}=0=a_{1}+2 a_{2}+a_{3}$ meaning $a_{2}=0$ and $a_{3}=-a_{1}$ in other words $U^{p} \operatorname{erp}=\underline{(1,0,-1)}$ and the polar to the pline $P(U)$ is the set $P\left(U^{\perp}\right)=\{\underline{(1,0,-1)}\}$.
(d) Prove that any two distinct projective planes in \mathbb{P}^{3} must intersect in a projective line. A projective plane in \mathbb{P}^{3} is of the form $P(U)$ where U is a linear subspace of \mathbb{R}^{4} of dimension 3. Two distinct 3-dimensional subspaces of \mathbb{R}^{4} must intersect in a two-dimensional subspace Z because of lemma 0.3 of the lecture notes. The corresponding projective planes therefore intersect in the pline $P(Z)$.
3. Define a Riemannian chart (P, g) by $P=(0,6)^{3}$ and g is given by $g_{12}=g_{21}=g_{23}=g_{32}=0$ and $g_{11}=g_{22}=g_{33}=1$ and $g_{13}(x, y, z)=g_{31}(x, y, z)=\frac{y}{3}$.
(a) Define curves $\alpha, \beta:(-1,1) \rightarrow P$ by $\alpha(t)=\left((1-t)^{2}, 1-\sin (t), 1-t\right)$ and $\beta(t)=$ $\left(e^{2 t}, e^{-t}, e^{-t}\right)$. Prove that α and β cannot both be geodesics with respect to the metric g. Since $\alpha(0)=\beta(0)$ and $\dot{\alpha}(0)=\dot{\beta}(0)$ the uniqueness theorem of geodesics says that $\alpha=\beta$ on at least a small neighborhood of 0 in case both are geodesics. Looking at the formulas it should be clear that $\alpha(1 / n) \neq \beta(1 / n)$, so they cannot both be geodesics.
(b) Find the angle between the curves α and β at their intersection point $\alpha(0)=\beta(0)=$ $(1,1,1)$.
The angle is 0 because the angle between the curves is the angle between their tangent vectors $\dot{\alpha}(0)=\dot{\beta}(0)$ with respect to the inner product $g(1,1,1)$ and some chosen orientation. However the angle formula shows that the angle between two equal vectors is always 0 regardless of the orientation.
(c) Find the length of the curve $\gamma:(-1,1) \rightarrow P$ given by $\gamma(t)=\left(1, e^{t}, e^{t}\right)$ with respect to g. Since $\dot{\gamma}(t)=e^{t} e_{2}+e^{t} e_{3}$ we have $g(\gamma(t))(\dot{\gamma}(t), \dot{\gamma}(t))=e^{2 t} g_{22}(\gamma(t))+e^{2 t} g_{33}(\gamma(t))+$ $2 e^{2 t} g_{23}(\gamma(t))=2 e^{2 t}$. Therefore $L(\gamma)=\int_{-1}^{1} \sqrt{g(\gamma(t))(\dot{\gamma}(t), \dot{\gamma}(t))} d t=\int_{-1}^{1} \sqrt{2 e^{2 t}} d t=$ $\sqrt{2} \int_{-1}^{1} e^{t} d t=\sqrt{2}\left(e-\frac{1}{e}\right)$.
(d) Is $F: P \rightarrow P$ given by $F(x, y, z)=(3-(x-3), 3-(y-3), 3-(z-3))$ a Riemannian isometry from (P, g) to (P, g) ?
For any p derivative $d F(p)$ is the linear map $d F(p)(x, y, z)=(-x,-y,-z)$ so $d F(p)=-i d$ for all p. We should compare for any two vectors v, w the numbers $g(F(p))(d F(p) v, d F(p) w)$ with $g(p)(v, w)$. If we choose $v=e_{1} w=e_{3}$ and $p=(2,2,2)$ then $F(p)=(4,4,4)$ and $g(F(p))(d F(p) v, d F(p) w)=g(4,4,4)(-v,-w)=g(4,4,4)(v, w) \neq g(3,3,3)(v, w)$ because $g(x, y, z)\left(e_{1}, e_{3}\right)=g_{13}(x, y, z)=\frac{y}{3}$.

